\(\int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx\) [868]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (warning: unable to verify)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 233 \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\frac {\arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a-b)^{3/2} d}-\frac {\text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a+b)^{3/2} d}-\frac {2 b \left (a^2+2 b^2\right )}{a^2 \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}} \]

[Out]

arctan((I*a-b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/(I*a-b)^(3/2)/
d-arctanh((I*a+b)^(1/2)*tan(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/(I*a+b)^(3/
2)/d-2*b*(a^2+2*b^2)/a^2/(a^2+b^2)/d/cot(d*x+c)^(1/2)/(a+b*tan(d*x+c))^(1/2)-2*cot(d*x+c)^(1/2)/a/d/(a+b*tan(d
*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.87 (sec) , antiderivative size = 233, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {4326, 3650, 3730, 3697, 3696, 95, 209, 212} \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=-\frac {2 b \left (a^2+2 b^2\right )}{a^2 d \left (a^2+b^2\right ) \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}+\frac {\sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \arctan \left (\frac {\sqrt {-b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d (-b+i a)^{3/2}}-\frac {\sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \text {arctanh}\left (\frac {\sqrt {b+i a} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{d (b+i a)^{3/2}}-\frac {2 \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}} \]

[In]

Int[Cot[c + d*x]^(3/2)/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

(ArcTan[(Sqrt[I*a - b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]])/((
I*a - b)^(3/2)*d) - (ArcTanh[(Sqrt[I*a + b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Cot[c + d*x]]*S
qrt[Tan[c + d*x]])/((I*a + b)^(3/2)*d) - (2*b*(a^2 + 2*b^2))/(a^2*(a^2 + b^2)*d*Sqrt[Cot[c + d*x]]*Sqrt[a + b*
Tan[c + d*x]]) - (2*Sqrt[Cot[c + d*x]])/(a*d*Sqrt[a + b*Tan[c + d*x]])

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3650

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + D
ist[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c -
 a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x],
 x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && I
ntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) &&  !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))

Rule 3696

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[A^2/f, Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2 +
 B^2, 0]

Rule 3697

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(A + I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 -
 I*Tan[e + f*x]), x], x] + Dist[(A - I*B)/2, Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A^2
 + B^2, 0]

Rule 3730

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Ta
n[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1)
 - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C,
 n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] &&  !(ILtQ[n, -1] && ( !I
ntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))

Rule 4326

Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ
[u, x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {1}{\tan ^{\frac {3}{2}}(c+d x) (a+b \tan (c+d x))^{3/2}} \, dx \\ & = -\frac {2 \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}}-\frac {\left (2 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {b+\frac {1}{2} a \tan (c+d x)+b \tan ^2(c+d x)}{\sqrt {\tan (c+d x)} (a+b \tan (c+d x))^{3/2}} \, dx}{a} \\ & = -\frac {2 b \left (a^2+2 b^2\right )}{a^2 \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}}-\frac {\left (4 \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {\frac {a^2 b}{4}+\frac {1}{4} a^3 \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{a^2 \left (a^2+b^2\right )} \\ & = -\frac {2 b \left (a^2+2 b^2\right )}{a^2 \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}}+\frac {\left ((i a-b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {1+i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{2 \left (a^2+b^2\right )}-\frac {\left ((i a+b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \int \frac {1-i \tan (c+d x)}{\sqrt {\tan (c+d x)} \sqrt {a+b \tan (c+d x)}} \, dx}{2 \left (a^2+b^2\right )} \\ & = -\frac {2 b \left (a^2+2 b^2\right )}{a^2 \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}}+\frac {\left ((i a-b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{(1-i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 \left (a^2+b^2\right ) d}-\frac {\left ((i a+b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{(1+i x) \sqrt {x} \sqrt {a+b x}} \, dx,x,\tan (c+d x)\right )}{2 \left (a^2+b^2\right ) d} \\ & = -\frac {2 b \left (a^2+2 b^2\right )}{a^2 \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}}+\frac {\left ((i a-b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1-(i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\left (a^2+b^2\right ) d}-\frac {\left ((i a+b) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{1-(-i a+b) x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right )}{\left (a^2+b^2\right ) d} \\ & = \frac {\arctan \left (\frac {\sqrt {i a-b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a-b)^{3/2} d}-\frac {\text {arctanh}\left (\frac {\sqrt {i a+b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{(i a+b)^{3/2} d}-\frac {2 b \left (a^2+2 b^2\right )}{a^2 \left (a^2+b^2\right ) d \sqrt {\cot (c+d x)} \sqrt {a+b \tan (c+d x)}}-\frac {2 \sqrt {\cot (c+d x)}}{a d \sqrt {a+b \tan (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 5.74 (sec) , antiderivative size = 229, normalized size of antiderivative = 0.98 \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=-\frac {\sqrt {\cot (c+d x)} \left (\frac {\sqrt [4]{-1} a \arctan \left (\frac {\sqrt [4]{-1} \sqrt {-a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}}{(-a+i b)^{3/2}}+\frac {\frac {\sqrt [4]{-1} a^2 (a-i b) \arctan \left (\frac {\sqrt [4]{-1} \sqrt {a+i b} \sqrt {\tan (c+d x)}}{\sqrt {a+b \tan (c+d x)}}\right ) \sqrt {\tan (c+d x)}}{\sqrt {a+i b}}+\frac {2 \left (a \left (a^2+b^2\right )+b \left (a^2+2 b^2\right ) \tan (c+d x)\right )}{\sqrt {a+b \tan (c+d x)}}}{a \left (a^2+b^2\right )}\right )}{a d} \]

[In]

Integrate[Cot[c + d*x]^(3/2)/(a + b*Tan[c + d*x])^(3/2),x]

[Out]

-((Sqrt[Cot[c + d*x]]*(((-1)^(1/4)*a*ArcTan[((-1)^(1/4)*Sqrt[-a + I*b]*Sqrt[Tan[c + d*x]])/Sqrt[a + b*Tan[c +
d*x]]]*Sqrt[Tan[c + d*x]])/(-a + I*b)^(3/2) + (((-1)^(1/4)*a^2*(a - I*b)*ArcTan[((-1)^(1/4)*Sqrt[a + I*b]*Sqrt
[Tan[c + d*x]])/Sqrt[a + b*Tan[c + d*x]]]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*b] + (2*(a*(a^2 + b^2) + b*(a^2 + 2*b
^2)*Tan[c + d*x]))/Sqrt[a + b*Tan[c + d*x]])/(a*(a^2 + b^2))))/(a*d))

Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2764\) vs. \(2(197)=394\).

Time = 41.35 (sec) , antiderivative size = 2765, normalized size of antiderivative = 11.87

method result size
default \(\text {Expression too large to display}\) \(2765\)

[In]

int(cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/4/d*csc(d*x+c)*(-1/(1-cos(d*x+c))*(csc(d*x+c)*(1-cos(d*x+c))^2-sin(d*x+c)))^(3/2)*(1-cos(d*x+c))*((csc(d*x+
c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)/(csc(d*x+c)^2*(1-cos(d*x+c))^2-1))^(1/2)*((a^2+b^2)^(1/
2)*(-b+(a^2+b^2)^(1/2))^(1/2)*ln(-1/(1-cos(d*x+c))*(csc(d*x+c)*a*(1-cos(d*x+c))^2+2*sin(d*x+c)*(-csc(d*x+c)*(c
sc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)-
2*(a^2+b^2)^(1/2)*(1-cos(d*x+c))-2*b*(1-cos(d*x+c))-sin(d*x+c)*a))*(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))
^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)*a^2-(a^2+b^2)^(1/2)*(-b+(a^2
+b^2)^(1/2))^(1/2)*ln(1/(1-cos(d*x+c))*(-csc(d*x+c)*a*(1-cos(d*x+c))^2+2*(a^2+b^2)^(1/2)*(1-cos(d*x+c))+2*sin(
d*x+c)*(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)*(b+(
a^2+b^2)^(1/2))^(1/2)+2*b*(1-cos(d*x+c))+sin(d*x+c)*a))*(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc
(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)*a^2-2*ln(-1/(1-cos(d*x+c))*(csc(d*x+c)*
a*(1-cos(d*x+c))^2+2*sin(d*x+c)*(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(
1-cos(d*x+c)))^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)-2*(a^2+b^2)^(1/2)*(1-cos(d*x+c))-2*b*(1-cos(d*x+c))-sin(d*x+c)*
a))*a^2*b*(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)*(
b+(a^2+b^2)^(1/2))^(1/2)*(-b+(a^2+b^2)^(1/2))^(1/2)+2*ln(1/(1-cos(d*x+c))*(-csc(d*x+c)*a*(1-cos(d*x+c))^2+2*(a
^2+b^2)^(1/2)*(1-cos(d*x+c))+2*sin(d*x+c)*(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*
x+c))-a)*(1-cos(d*x+c)))^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2)+2*b*(1-cos(d*x+c))+sin(d*x+c)*a))*a^2*b*(-csc(d*x+c)*
(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)*(b+(a^2+b^2)^(1/2))^(1/2
)*(-b+(a^2+b^2)^(1/2))^(1/2)-4*csc(d*x+c)^2*(a^2+b^2)^(1/2)*(-b+(a^2+b^2)^(1/2))^(1/2)*a^3*(1-cos(d*x+c))^2-4*
csc(d*x+c)^2*(a^2+b^2)^(1/2)*(-b+(a^2+b^2)^(1/2))^(1/2)*a*b^2*(1-cos(d*x+c))^2-2*(a^2+b^2)^(1/2)*arctan((-(b+(
a^2+b^2)^(1/2))^(1/2)*(csc(d*x+c)-cot(d*x+c))+(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-co
t(d*x+c))-a)*(1-cos(d*x+c)))^(1/2))/(1-cos(d*x+c))*sin(d*x+c)/(-b+(a^2+b^2)^(1/2))^(1/2))*(-csc(d*x+c)*(csc(d*
x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)*a^2*b-2*(a^2+b^2)^(1/2)*arctan(
((b+(a^2+b^2)^(1/2))^(1/2)*(csc(d*x+c)-cot(d*x+c))+(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+
c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2))/(1-cos(d*x+c))*sin(d*x+c)/(-b+(a^2+b^2)^(1/2))^(1/2))*(-csc(d*x+c)*(c
sc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)*a^2*b-2*arctan((-(b+(a^2+b
^2)^(1/2))^(1/2)*(csc(d*x+c)-cot(d*x+c))+(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x
+c))-a)*(1-cos(d*x+c)))^(1/2))/(1-cos(d*x+c))*sin(d*x+c)/(-b+(a^2+b^2)^(1/2))^(1/2))*a^4*(-csc(d*x+c)*(csc(d*x
+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)+2*arctan((-(b+(a^2+b^2)^(1/2))^(
1/2)*(csc(d*x+c)-cot(d*x+c))+(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-c
os(d*x+c)))^(1/2))/(1-cos(d*x+c))*sin(d*x+c)/(-b+(a^2+b^2)^(1/2))^(1/2))*a^2*b^2*(-csc(d*x+c)*(csc(d*x+c)^2*a*
(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)-2*arctan(((b+(a^2+b^2)^(1/2))^(1/2)*(csc
(d*x+c)-cot(d*x+c))+(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)
))^(1/2))/(1-cos(d*x+c))*sin(d*x+c)/(-b+(a^2+b^2)^(1/2))^(1/2))*a^4*(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c)
)^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)+2*arctan(((b+(a^2+b^2)^(1/2))^(1/2)*(csc(d*x+c)-cot(d
*x+c))+(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2))/(1-
cos(d*x+c))*sin(d*x+c)/(-b+(a^2+b^2)^(1/2))^(1/2))*a^2*b^2*(-csc(d*x+c)*(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(
csc(d*x+c)-cot(d*x+c))-a)*(1-cos(d*x+c)))^(1/2)+8*(a^2+b^2)^(1/2)*(-b+(a^2+b^2)^(1/2))^(1/2)*a^2*b*(csc(d*x+c)
-cot(d*x+c))+16*(a^2+b^2)^(1/2)*(-b+(a^2+b^2)^(1/2))^(1/2)*b^3*(csc(d*x+c)-cot(d*x+c))+4*(a^2+b^2)^(1/2)*(-b+(
a^2+b^2)^(1/2))^(1/2)*a^3+4*(a^2+b^2)^(1/2)*(-b+(a^2+b^2)^(1/2))^(1/2)*a*b^2)/(csc(d*x+c)^2*(1-cos(d*x+c))^2-1
)/(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-2*b*(csc(d*x+c)-cot(d*x+c))-a)*2^(1/2)/a^2/(a^2+b^2)^(3/2)/(-b+(a^2+b^2)^(1
/2))^(1/2)

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 7665 vs. \(2 (193) = 386\).

Time = 1.40 (sec) , antiderivative size = 7665, normalized size of antiderivative = 32.90 \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\text {Too large to display} \]

[In]

integrate(cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Too large to include

Sympy [F]

\[ \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {\cot ^{\frac {3}{2}}{\left (c + d x \right )}}{\left (a + b \tan {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(cot(d*x+c)**(3/2)/(a+b*tan(d*x+c))**(3/2),x)

[Out]

Integral(cot(c + d*x)**(3/2)/(a + b*tan(c + d*x))**(3/2), x)

Maxima [F]

\[ \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\int { \frac {\cot \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(cot(d*x + c)^(3/2)/(b*tan(d*x + c) + a)^(3/2), x)

Giac [F]

\[ \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\int { \frac {\cot \left (d x + c\right )^{\frac {3}{2}}}{{\left (b \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(cot(d*x+c)^(3/2)/(a+b*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(cot(d*x + c)^(3/2)/(b*tan(d*x + c) + a)^(3/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^{\frac {3}{2}}(c+d x)}{(a+b \tan (c+d x))^{3/2}} \, dx=\int \frac {{\mathrm {cot}\left (c+d\,x\right )}^{3/2}}{{\left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(cot(c + d*x)^(3/2)/(a + b*tan(c + d*x))^(3/2),x)

[Out]

int(cot(c + d*x)^(3/2)/(a + b*tan(c + d*x))^(3/2), x)